最近の放射線計測技術とその応用

富山高等専門学校 高田英治

本日の内容

- 1. 放射線計測手法の概要
 - ①概論
 - ② シンチレーション検出器
 - ③ 無機半導体検出器
- 2. 最近の放射線計測手法の例
 - ① ァカメラ
 - ②高速中性子用検出器
 - ③有機半導体を用いる放射線検出器

放射線計測手法の概要

- 放射線検出器の種類
 - 電荷として読み出すもの
 - ガス検出器
 - シンチレーション検出器
 - 半導体検出器

今日のお話はこちらが中心

- 照射後に光の強度として読み出すもの
 - 熱ルミネッセンス線量計
 - OSL(Optically Stimulated Luminescence)線量計
- 飛跡として読み出すもの
 - 霧箱
 - 固体飛跡検出器
 - CR-39などプラスチック
 - 原子核乾板

電荷を生成するために 一放射線と物質の相互作用ー

- 荷電粒子
 - 物質中を進むと必ずエネルギーを付与する
- γ線・X線
 - 光電効果
 - コンプトン効果
 - 電子対生成
- 中性子
 - 入射した物質との間で反応
 - (n, α)、(n, p)などの荷電粒子生成反応
 - 核分裂反応:核分裂比例計数管(Fission Chamber)

シンチレーション検出器

- 放射線用蛍光体:シンチレータと高感度光検出器 の組合せ
- シンチレータ
 - 無機シンチレータ
 - 古典的にはNaI(TI)、CsI(TI)
 - 最近ではBGO、GSO、GAGGなど多数開発され高性能化
 - 主にγ線対象の高感度、高エネルギー分解能を目指したもの
 - 有機シンチレータ
 - 液体
 - プラスチック
 - 高速だが感度は低い
 - 反跳陽子→高エネルギー中性子に感度を有す

シンチレーション検出器用光検出器(1)

- 光電子増倍管(PhotoMultiplier Tube: PMT)
 - 加速された電子がダイノードに衝突する際に電子増倍
 - 高ゲイン(~106)、高放射線耐性、大型化も可能
- アバランシェホトダイオード(APD)
 - 固体内部での電子増倍
 - ゲイン: 10²程度だが、小型→ポータブル機器

シンチレーション検出器用光検出器(2)

- Si-PM (Silicon Photomultiplier)
 - 浜ホト製品:マルチピクセルフォトンカウンタ(MPPC)
 - ガイガーモードで動作するピクセル型APDが多数集合した光検出器
 - ゲイン: 106程度を達成
 - 入射可視光の強度によってONになるピクセルが変化
 - → 可視光強度と出力電荷の間にそれなりに線形性がある
 - → パルス波高計測=エネルギー計測へも適用可能

無機半導体検出器

- 放射線により半導体中にエネルギーが付与
- 電子が価電子帯から伝導体に励起され、電子• 正孔対が生成される
- それらが電極に収集され、電荷が出力される。

代表的な無機半導体γ線検出器

- ◆ HP-Ge検出器(高純度ゲルマニウム検出器)
 - 高感度、高エネルギー分解能
 - 環境γ線計測=核種分析
 - バンドギャップが小さい
 - →常温では熱により電子がバ ンドギャップを超える
 - →使用時には冷却する必要が ある

代表的な無機半導体γ線検出器

- 常温使用可能な検出器:バンドギャップが大
 - CdTe検出器(バンドギャップ1.52eV)
 - 電子、正孔の移動度の違いが大きい
 - 材料中の深いアクセプタによる電子捕獲→分極現象が課題
 - CdZnTe検出器(1.76eV)
 - CdTeよりも大きいバンドギャップ
 - 分極の影響は小さい
 - HgI₂検出器(2.13eV)
 - 長所:光電吸収断面積大、大きいバンドギャップ
 - 短所:
 - 低い正孔移動度
 - 短い電荷キャリアの平均流動距離が短い

最近の放射線計測手法の例

ィカメラ

γ カメラの研究背景

原子力発電所での事故

原子炉から放射性物質が放出

核種	γ線エネルギー(keV)
131	365
¹³⁴ Cs	605
¹³⁷ Cs	662

作業員・住民の放射線防護

原子炉建屋内・発電所周辺の空間線量率、放射性物質分布の測定

※緊急を要するため、迅速な測定が求められる

測定時間、測定回数を低減させるために、 高検出効率、広視野、可搬性を持ったガンマカメラが必要

γカメラの可変形状へのニーズ

福島第一原発の事故で放射性物質が発電所内外に分布 円滑に除去作業を進めるには汚染箇所の特定が必要

非常に狭隘な空間が存在→それよりも奥の測定が困難

高線量率:検出器の感度を抑えることが必要 →これまでの検出器高度化とは逆の方向の発送が必要

想定している使用方法

コンプトンカメラの原理

E₁、E₂を測定散乱角→θを計算

$$\cos \theta = 1 - \text{mc}^2 \left(\frac{1}{E_2} - \frac{1}{E_1 + E_2} \right)$$

複数のコンプトンコーンの重なりからア線源の位置を推定

形状可変のための基本体系

傘のような形状の芯材に検出器を設置: 散乱体と吸収体

検出器:シンチレータGAGG(1cm3の立方体)を使用

検出器数:散乱体32、吸収体:32

検出器で使用する材料

GAGG: Gadolinium Aluminum Gallium Garnet

計算による特性予測

- 放射線シミュレーションコード: EGS5
- 線源: 137Cs-137点線源
- 線源一散乱体距離D=500 [mm]

傘の開き角度=0°の時

計算上、半値幅:56.7°で 単一線源の位置特定が可能

実験による評価

計算結果

半値幅:56.7°

実験結果

半値幅:68.4°

計算と実験の違い

- 実験装置におけるノイズ
 - ⇒ Chance Coincidenceの影響
- 今後、これらの要因について検討し、計算結果による実験結果の再現を目指す。
 - ⇒ 計算による形状や測定条件の最適化

高線量率対応化+中性子カメラへの応用

GAGG等の無機シンチレータは密度が大きく高効率 かつエネルギー測定も可能

高線量率場ではパイルアップ等により測定不可能に

エネルギー測定性能を犠牲にし、低密度かつ高速なシンチレータを利用

波形弁別による中性子/γ線弁別も可能な スチルベン等の有機シンチレータ

波形弁別可能な有機シンチレータ

有機シンチレータ=H原子を含む

高速中性子入射時に反跳陽子 が発生→高速中性子に感度

スチルベン(固体)や一部の液体シンチレータは電子、陽子によるエネルギー付与時の波形が異なる

スチルベン等による高速中 性子カメラの開発

中性子カメラとしての応答予測

Ep、En1 → 散乱角 θ

$$\tan \theta = \sqrt{\frac{E_p}{E_{n1}}}$$

形状可変 アカメラ: まとめ

- 形状が変化するγカメラについてシミュレーション及び実験により特性評価を行い、その可能性を示した。同体系でシンチレータを変更すれば、高速中性子カメラとしても使用可能な見通し。
- ノイズのためか、やや実験結果の角度分解能が 劣っているが、今後、ノイズの低減を行う予定。
- シミュレーションによって体系(検出器間距離等) の最適化を行う予定。
- 福島第一原発に近い地域で実際に測定を行い、 現地への適用性を評価する。

核融合中性子検出器

代表的な核融合反応

D + T
$$\rightarrow$$
 ⁴He(3.5 MeV) + n(14 MeV)
或いは、 α 粒子 中性子

D + D
$$\rightarrow$$
 ³He (0.82 MeV) + n (2.45 MeV)
D + D \rightarrow T (1.01 MeV) + p (3.03 MeV)

注: MeVは、エネルギーの単位。 メガ電子ボルト。

その他、

D +
3
He $\rightarrow {}^{4}$ He (3.67 MeV) + p (14.67 MeV)
p + 6 Li $\rightarrow {}^{4}$ He (1.7 MeV) + 3 He (2.3 MeV)

核融合炉における中性子計測

- 中性子発生量および発生率
 - プラズマ全体での反応率の推定
 - → プラズマの物理現象の理解
 - BF₃比例計数管、³He 比例計数管、フィッションチェンバーなどがある
 - 大型・中型トカマクでは、フィッションチェンバーが主流
 - =反応Q値が大きくBGと区別しやすい
- 中性子エネルギー
 - 中性子エネルギーおよび量からプラズマ 中のD、Tの比率を推定
 - →14MeVと2.5MeVの弁別
 - →エネルギー分解能より統計精度
 - エネルギーの広がりからイオン温度、プラズマ回転速度などの物理量を推定
 - →エネルギー分解能が重要
 - 検出器
 - 反跳陽子型検出器+アンフォールディング
 - 反跳陽子磁気分析スペクトロメータ
 - ダイアモンド半導体検出器

Fig. 5 Schematic diagram of the magnetic proton recoil spectrometer [29].

(T. Nishitani et al., J. Plasma Fusion Res. Vol.80、No. 10(2004)860-869において G. Ericsson et al., Rev. Sci. Instrum. 72, 759 (2001)から引用.)

核融合炉における中性子計測

- 中性子発生分布測定
 - DT プラズマ
 - 中性子発生分布はアルファ粒子の発生分布 を与える
 - →アルファ粒子の物理研究に非常に重要
 - DD プラズマ
 - 中性子発生分布はイオン系の輸送解析に重要なデータ
 - マルチチャンネルのコリメータと中性子ー γ線弁別の可能な検出器の組み合わせ
 - 液体シンチレーション検出器(NE213など)
 - スチルベンシンチレーション検出器
 - シンチレーティング光ファイバー型検出器

Fig. 4 Schematic diagram of the JT-60 neutron profile monitors.

(T. Nishitani et al., J. Plasma Fusion Res. Vol.80, No. 10(2004)860-869)

Sci. Fi.の構造

A Typical Round Scintillating Fiber

Sci. Fi.による高速中性子指向性 検出器の原理

- Sci. Fi.の長尺形状に起因する高速中性子に対する 固有の志向性
- 中性子入射角度によりSci. Fi.中へのエネルギー付与 の大きさに違い
- パルス波形弁別により、平 行入射に近い中性子のみ を測定可能

中性子入射方向から見て 反跳陽子は前方に発生しやすい

Sci. Fi.に平行に近い角度で中性子が入射した場合、反跳陽子はSci. Fi.中に多くのエネルギーを付与する。

→波高値の大きいパルスが出力

斜めにSci. Fi.に入射すると、反跳陽子は Sci. Fi.の外に飛び出すことが多い→波高 値の小さいパルスが出力

パルス波高弁別により、Sci. Fi. に平行に近い角度で入射した 中性子のみを計測可能

歴史的な開発経緯

- 30年程度前: LANLにおいて開発
- JT-60Uへも適用(その際、東大が協力)

応答評価ー閾値の設定

閾値を500ch程度に設定し、それ 以上の計数のみカウントすれば、 DD中性子およびγ線の存在する環 境でDT中性子のみを計測可能

Sci-Fi長の最適化(1)

- 9cmと6cmでは500ch以上の 計数率にあまり差がない
- 要因(1)
 - Sci-Fi中に中性子が入射後、 Sci-Fi自身で遮蔽される。そのため、長いSci-Fiを用いても、光検出器に近い位置では相互作用確率が小さい。

Sci-Fi長の最適化(2)

- 要因(2)
 - γ線源を用い、Sci-Fiに沿った各位置で相互作用を発生
 - 光検出器から離れた位置で発生した可視光は、光検出器までの移動の際に減衰する
 - あまり長いSci-Fiを用いても可視光が光検出器に到達できない

長さ:6cm程度が最適である。

LHD装置への適用結果

波高分布においてDD中性子+γと DT中性子の2成分を確認 Fission Chamberによる計数と同様 の時間変化を確認

Sci-Fi検出器まとめ

- Sci-Fiを用いる高速中性子検出器を14MeV中性子計測に適用するため、その長さを最適化した。6cm程度が最適であることを示した。
- 核融合研LHD、韓国KSTARへ適用し、データを取得した。今後、さらに計測系のbrush-upを行い、安定したデータ取得を継続する予定。
- 高速中性子/γ線の弁別機能を有する同様の検 出器の開発にも着手予定。

医療応用

放射線の医療応用

- 我々になじみの深いX線撮影以外にも、放射線は 医療分野で広く用いられています。
- 例
 - 核医学検査
 - PET検査(Positron Emission Tomography)
 - X線CT
 - 荷電粒子線によるがん治療
 - IVR(InterVentional Radiography)

PET検査の説明の前に

- 陽電子(Positron、ポジトロン、 e⁺)について
- 電子:e⁻の反粒子
 - 質量やスピンなどは電子と同じ
 - 電荷がマイナスではなくプラス
- 陽電子の動き
 - 物質中の陽電子は近くにある電子とすぐ結合し、消滅します(電子も消滅)
 - その時に2本のγ線を正反対の 方向に出します。

PET検査

- 目的:
 - 腫瘍やアルツハイマー病の発見など
- 方法:
 - 放射性薬剤
 - FDG(C₆H₁₁¹⁸FO₄フルオロデオキシグルコース)=グルコース(ブドウ糖)に似た薬物:一部を¹⁸Fで置換: ¹⁸Fは陽電子を放出
 - ¹¹C置換アミロイドβ
 - FDGは脳の活動の活発な部位や腫瘍 に集中する特性を持つ
 - 腫瘍→FDGが集中したところ
 - アルツハイマー病→アミロイドβ(11C置換)の集中が健常者より大きいところ

FDGの位置の測定

- ¹⁸F:陽電子e⁺(電子の反物質)を放出
- 陽電子は近くにある電子: e⁻と結合し消滅
- 電子、陽電子の質量分のエネルギーがγ線(511keV)
 ×2本として180°方向(正反対の方向)に放出

 $E=mc^2$ (Cは光速、相対性理論=質量とエネルギーは等価)

消滅γ線の測定

- 患者の周囲を多数の小型検出器で囲う
- そのうち2つの検出器で測定されたとき、FDGはこれらの検出器を結ぶ線上に存在
- このような測定を長時間繰り返し、直線を重ねて書くことで腫瘍分布を推定

PET検査、IVRによる被曝量

- PET検査:約2mSv/1回
 - バックグランド放射線による被曝の1年分
- IVR:皮膚線量は数Sv/回に達する場合あり
 - 全身被曝なら死亡するレベル
 - 局所被曝(主に皮膚)なので脱毛等
- どちらもバックグランドから見れば大きい被曝だが、それだけ被曝してもつり合うメリットがある
 - 放射線被曝はリスクとベネフィットの釣り合いで考えることが 重要
- 被曝量を低減するためにより性能の良い<u>測定システムの開発が今も続いています</u>。

本校の取り組み 有機半導体光検出器の応用

- 電子供与体(p)、電子受容体(n)のそれぞれの特性 を示す材料が存在
 - HOMO (Highest Occupied Molecular Orbital)
 - LUMO (Lowest Occupied Molecular Orbital)
- 励起子
 - 無機材料:誘電率が小さい
 - ワニエ励起子
 - 容易に電子、正孔に分離
 - 有機材料:誘電率が大きい
 - フレンケル励起子
 - 分離が困難→p型/n型の界面に移動して分離

有機半導体光検出器の構造例

- ヘテロ型: 平板型のp型層 n型層が接触
 - 真空蒸着で作成される場合が多い
 - α-NPD、td-PTCなど低分子材料
 - α -NPD: N,N'-Di(1-naphthyl)-N,N'-diphenylbenzidine
 - td-PTC: ditridecyl perylenetetracarboxylic diimide
- バルクヘテロ型:p型、n型材料を混合して塗布
 - スピンコーティングなど
 - P3HT、PCBMなど高分子材料
 - PCBM: Phenyl-C61-Butyric-Acid-Methyl Ester
 - P3HT: Poly(3-hexylthiophene-2,5-diyl)
- 単結晶型
 - 無機半導体と同様に有機半導体単結晶を作成し、電極を形成
 - 励起子の分離は電極付近で発生
 - 単結晶層が厚いため、電圧の印加が不可欠

原理

動作原理

- 1. X線入射→プラスチックシンチレータが可視発光
- 2. 可視発光を吸収し、主にp型有機半導体中に励起子生成
- 3. 励起子の拡散→p/n界面に移動して解離→電子・正孔が生成
- 4. 電荷輸送・収集

配付資料に誤植

バルクヘテロ型有機放射線検出器 の製作プロセス(スピンコート法)

- ① Plastic Scintillator上にIZO電極をスパッタ
- ② PEDOT:PSS溶液をスピンコート
- ③ PCBM:P3HT溶液をスピンコート
- ④ AI電極を真空蒸着

IZO: Indium Zinc Oxide

PEDOT: Poly(3,4-ethylenedioxythiophene)

PSS: poly(styrenesulfonate)

PCBM: Phenyl-C61-Butyric-Acid-Methyl Ester

P3HT: Poly(3-hexylthiophene-2,5-diyl)

(外形:10mm角、有感部面積:32mm²)

作製した素子の構造

(外形:25mm角、有感部:2mm×4mm×5mm)

X線透過像撮影結果

動物用CT装置を用いた実験

素子データ

▶大きさ:10mm角 ▶有感部:24mm²

実験条件

管電圧:90[kV]

管電流:40,80,120,160,200[μΑ]

X線発生装置による実験

- 素子形状
 - プラスチックシンチレータ 10mm×10mm×厚さ1mm
 - 有感部面積:4mm×8mm
- 工業用X線発生装置: GE:ERESCO 160MF-4_R
- 加速電圧: 50kV(固定)
- 管電流:0.5mA~5mA
- 概ね管電流と発生電流の間 に線形的な関係

X線発生装置の管電流と素子からの発生電流の関係 (X線照射時に発生した電流から暗電流を差し引いた電流)

インクジェット法による素子製作

- 将来的な有機半導体検 出器の応用
 - ・患者の頭や腕への設置→曲面への設置や大面積化に対応することが要求
- スピンコート法では有機 PDを曲面や大面積に塗 布することが原理上難し い
- ⇒ インクジェット法の利用

インクジェット塗布装置 (UIJPS-C-100-LC sn/01501E (Clemia Co. LTD))

インクジェット塗布装置を用いた素 子製作(溶媒:トリクロロエチレン)

ORD-A ORD-B インクジェット塗布装置を用いて製作した素子 (大きさ:10mm角、有感部面積:32mm²)

ORD-C スピンコート法を用いて製作したORD (大きさ:10mm角、有感部面積:32mm²)

ORD製作条件

ORD番号	ORD-A	ORD-B
X軸ピッチ[mm]	0.070	0.025
X軸ドット数	130	380
Y軸ピッチ[mm]	0.05	0.025
Y軸ドット数	100	240

テーブルカメラ撮影結果(ORD-B) 52

白色X線照射実験結果 (溶媒:トリクロロエチレン)

- X線強度とX線誘起電流間に線形に近い関係が得られた
- 製作条件により、X線誘起電流の大きさが大きく異なる
- スピンコートにより製作した素子よりも発生するX線誘起電流が小さい

有機半導体検出器:まとめ

- X線透過撮影への影響が小さく、かつ測定可能な 電流が発生するX線検出器として開発を進めている
 - CT装置でも十分な電流が観測
 - 実装に向けた検討が必要(電極固定、安定性など)
- インクジェット法での製作可能性を実証
- 有機半導体単結晶を用いる素子についても検討中。バルクへテロ型よりも性能のよい素子が作製できる見込み。

まとめ

- 福島第一原発廃炉、核融合、医療などに応用可能な放射線検出器の開発を行っています。
- 放射線検出器に関して相談等ありましたら、お声がけ下さい。
- また、放射線計測システムを学習すると、基本的な物理を理解する力とともに、電気・電子回路、ソフトウェア開発に関する能力が身につきます。本校学生の就職についても、どうぞよろしくお願いいたします。